旷视IPO在即,看清“AI第一股”的商业真相

我思锅我在GN

2020-03-02 08:19:19 

作者:我思锅我在GN


导语:告诉你“AIaaS”的正确打开方式。


被奉为硅谷创业圣经的《从0到1》这本书中提过,垄断型企业都有自己的壁垒,无外乎是:专利技术、网络效应、规模经济或品牌优势。被资本界誉为“AI第一股”的旷视科技即将登陆港股交易所,招股书中最开始是CEO印奇写给投资人的信函,最开始便说到“深度学习是旷视的核心竞争力”。

 

深度学习?这似乎与书中提到的四个指标都不太相符。以旷视为代表的AI公司,他们的核心竞争力到底是什么?而要弄明白这个问题,必须先理解他们的商业模式究竟是怎样的?于是我一口气想到了以下几个问题:


  • AI公司是软件公司吗?是SaaS、PaaS还是传统软件厂商?


  • AI公司是解决方案商吗?是集成商?还是外包公司?


  • AI公司的壁垒究竟在哪里?真的是“深度学习”所代表的的AI技术?

 

2016年Alpha Go开启了所谓“人工智能的元年”,但才过去了两三年却发现“投资人逃离人工智能”。外界质疑的焦点无非是技术突破遇到“瓶颈”和商业模式“不清晰”。


印奇的那句话像在回应第一点,而第二个问题则需要完整的数据支持和严谨的逻辑分析,直接凭资本走向和主观感受来臆断,我认为是一个投机取巧的行为。所以,以下内容希望能带领大家逐一解答上述疑问,并最终解锁一个更核心的话题:

 

类比SaaS对传统软件的革命,以旷视为代表的AI公司在商业模式上是否真的也存在颠覆式创新呢?

 

无论答案与否,只有搞清楚了这个问题,我们才可能客观地去判断AI公司的核心指标、竞争力、还有未来。如果坚持看到最后,文末有个彩蛋。

 

何谓“AI公司”


首先,我们需要对以旷视为代表的的AI公司下一个基本定义,这里特指自主研发以人工智能为原生且不可替代的技术,同时具备或已经向垂直行业拓展,并形成相关产品或解决方案的企业。

 

为了更形象地理解这句话,参照2016年云栖大会上阿里云发布的《人工智能:未来制胜之道》报告,行业对AI产业链已达成了以下共识:


 (点击可看大图)


在基础层,传统互联网公司和芯片大厂具有明显先发优势。因此,大部分国内AI公司都会从技术层或应用层切入,并且随着技术的沉淀和业务的拓展,两层的界限如今逐渐模糊。但整体来说初创公司有两条发展路径:


  • 以一个场景(如人脸识别)作为突破口,通过连接企业客户内部系统或自建场景入口如传感器等方式获取数据,基于多维度的数据不断训练模型、优化算法,在某一个场景问题中找到最佳解,再向其他行业中相似的场景复制;


  • 以一种通用技术(如机器视觉)作为突破口,深耕算法和底层框架,尤其当机器学习被工业界接纳后,从底层驱动训练模型,不仅能提升方案在不同场景下的普适性和运算效率,也最终提升了实际应用效果。

 

前者由于对场景理解深刻,便于触达客户、累积数据,因此产品更容易被客户接受,变现能力较强;后者希望借助算法和底层框架的优势高效地触达更多行业,赋能业内合作伙伴,通过开放合作的方式获取数据,其间未必能直接触达客户,因此覆盖范围广,但变现能力较弱。

 

我们暂不讨论哪种路径更优,需要达成共识的是:接下来我论的“AI公司”也是从技术或应用层切入,沿着上述任何一种或多种发展路径成长起来,并以AI技术为核心不可被其他计算方式所替代为前提。

 

公平起见,我会选取被资本界及业内人士公认的相关AI公司及其公开数据。去年7月,将视觉技术主要用于手机镜头上的虹软科技登录科创板;8月“CV(机器视觉)四小龙“之一旷视科技向港交所提交了IPO招股书;而最近,以语音识别为核心技术的A股上市公司科大讯飞也迎来两年来市值的最高点,不一而足。

 

因此,想不到任何比现在更合适的时间点来思考前面提出的疑问了。

 

 旷视的业务及经营模式

 

根据招股书,我将公司的产品、商业化以及经营模式详细梳理如下:


 (点击可看大图)


再结合截止到2019年6月30日(2019H1)的相关财务数据,我们便能初步掌握旷视的运营状况。


 (点击可看大图)


2019年仅仅是旷视营收破亿后的第三年,看总体营收及增速的意义不大。而仔细观察每一块业务的经营模式和财务数据后,我发现了三处“不寻常”的地方,后面将逐一探究:


  • 面向垂直行业提供云端身份识别的“行业SaaS”毛利率波动较大,不同于美国一系列典型SaaS上市公司的毛利率表现;


  • “个人设备”业务毛利率在2019年骤降,照理来说,越早商业化的业务毛利率应该随边际成本下降而上升或至少保持稳定;


  • 城市与供应链物联网解决方案是当前商业化的主战场,但以偏传统的项目制模式对抗市场中的各路玩家,旷视能继续保持同样的竞争力吗?


 


究竟什么是“AIaaS”的护城河?

 

再来看第三个疑问,城市物联网方案已经成为营收主力,2019年上半年的收入贡献超过70%。而去年初旷视还宣布投入20亿在供应链物联网业务上,与合作伙伴加快机器人落地产业。


可是无论从与集成商合作为主的项目制模式,还是近年来推出的一系列传感器和物流自动化设备线来看,这与市场上对AI公司的认识都有不少偏差。

 

何况在城市安全管理领域有海康大华等巨头坐镇,智慧物流也要面对Geek+、快仓等新兴仓储机器人公司的围追堵截,旷视将如何保证自己的竞争力并在未来发展中不会掉队呢?


 (点击可看大图)


我们从上图海康威视的核心财务数据中能对这家传统巨头近年来的战略窥视一二,公司在2018年提出“AI Cloud”,核心是覆盖从前端多维度采集、智能分析、到后端算法迭代和资源调度的端到端的计算架构。回顾前面对Brain++的讨论,相信大家能比较容易理解“AI Cloud”的核心理念和下图展示的产品形态了。


 (点击可看大图)


对于旷视而言,如果与同类AI机器视觉公司比,Brain++是他们在技术上的尚方宝剑;那么在商业化的进程中,一个结构化的底层系统才可能让他们在与巨头的持久战中笑到最后。


这个逻辑跟开发Brain++是相似的,只有用开放的系统平台去同时兼容存量市场和新增需求,尤其面对锱铢必较的企业级客户,如果能通过连接客户现有的设备和相关软件来提供更好的分析效果,这将会大大降低客户和合作伙伴的使用门槛。旷视把这个底层系统叫做“平台软件”。


 (点击可看大图)


这张图不仅让我想到“中台”的概念,还想起曾投资过Cloudera、Docker等明星企业服务公司的风投机构Greylock提出的一个概念叫“Systems of Intelligence(智能系统,如下图)”。我认为这将是新一代企业尤其是AI公司构建护城河的基础。



简单来说,智能系统层能够跨平台地获取并整合底层一切信息和数据源,结合ABC(AI、Big data、Cloud)能力,为客户提供实时、精准或个性化的分析。未来的护城河之战将从“如何获取更多数据”转为“如何更智能地利用数据”,这是一个持续迭代的过程,壁垒也将越来越高。

 

因此,从两年前提出“城市管理大脑”到去年初发布兼容多类型机器人的操作系统“河图”,旷视的确认识到了系统软件才是AI商业化的核心,未来的战略并不是向客户销售更多的智能硬件产品,以便在市场中分一杯羹而已。



我们经常听到一个词叫“商业闭环”,建立一个智能系统层正是实现对内与对外双向交互并实现闭环的过程。更重要的是,一旦形成从数据采集、传输、分析到决策反馈的流动闭环,以销售硬件产品为核心的传统方式将逐渐变为以软件驱动硬件产生实时效果的服务模式,客户可按需或按效果灵活付费。


基于国情,这可能在城市物联网管理及安防市场中不会得到理想化体现,但在物流、零售、泛金融甚至海外市场肯定能找到合适的落脚点。

 

以AI为核心的智能系统不仅能为企业建立更强大的护城河,更可能用一种类似SaaS的商业模式挑战传统行业的老玩家,正如当年Salesforce对Oracle的撼动。从这个角度来说,旷视所代表的“AIaaS”在商业模式上似乎在未来会无限“趋近”于SaaS。

 

回顾最开始提出的核心问题:


  • “AI”真的会成为旷视的“成本中心”吗?公司该如何解决看似无法消除的数据源及云服务成本问题?


  • 旷视提到的“行业SaaS”真的是SaaS吗?而曾经被高呼的“AIaaS”到底是什么模式?


  • “AIaaS”的护城河究竟在哪里?旷视又是如何做的?

 

最后我的回答是:


  • 我们仍不能把旷视当前业务中的“行业SaaS”与市场上普遍理解的“SaaS”产品画上等号,原因在于暂时无法避免的数据源成本导致不可预测的毛利率波动;


  • 数据在算法模型迭代的过程中并不会产生理想化的网络效应,要避免数据、计算等资源成为成本中心,自动化的算法生成和数据标注可能是最高效的解决办法,所以这更考验公司在深度学习等底层技术上的造诣以及战略规划;


  • AI公司在商业化上将会遇到各路阻力,唯有将产品销售思路转为可持续性的服务模式,才有机会突围。核心在于从战略上一开始便进行智能系统层的设计,建立生态连接。

  

“AI第一股”的未来

 

既然已经对旷视的历史与基本面刨根问底,顺道展望一下未来。

 

有几个事情我想可能适合旷视在上市后去考虑的:


  • 开源(或部分开源)Brain++:当前两大开源深度学习框架Google的TensorFlow和Facebook的PyTorch正打得不可开交,性能优劣不予置评。


    而有意思的是,先进入主流的TensorFlow凭借性能稳定与安全牢牢占据着工业界,而后入者PyTorch则通过易上手和操作简单在学术界撕开了一道裂缝。


    对比之下,旷视的优势一定在引以为豪的机器视觉垂直方向上,而保持该领域领先地位的重要方式则是建立开发者生态。


    基于国内得天独厚的数据及商业场景的优势,未来如果当机器学习甚至深度学习成为下一代IT建设的标配时,至少在视觉领域旷视便可占尽天时、地利与人和;

 

  • 为模型训练创造一套标准语言并向生态开放:听闻从2018年起团队就在规划一种用于深度学习训练的编程语言,用于协调训练所需要的灵活性以及推理所需的性能要求。


    去年2月Facebook首席AI科学家Yann LeCun也提到了是否需要一种比Python更灵活的语言来进行深度学习设计。所以行业内的探索在国内外都尚处早期,既然在机器视觉上旷视乃至国内同行都能与国际巨头不分伯仲,我相信这个机会属于提早布局的人;

 

  • 布局制造业:制造业占我国GDP近三分之一的比重,机器视觉最先在国外进入工业领域,主要用于尺寸测量与外观检测。如今在硬件端,从自然光、红外到激光,从2D到3D摄像头,百花齐放。


    海康威视也于2017年发布了工业相机产品系列。而在软件端AI的探索才刚刚开始。尽管样本数量与质量的匮乏对深度学习的落地造成了一定阻碍,或许这正好是旷视和其开放生态的机会。待真实场景和需求明确之前,提前进行相关布局,这又是一个百亿级的市场。



投资人正在逃离AI吗?相信各位也有了自己的判断。

 

祝愿旷视能顺利上市,尤其在当前国外资本市场变化莫测、国内科技板块暗流涌动之下,大家将如何对待这只40亿美金的独角兽呢?我们拭目以待。


评论

发表

回复“

最新评论

这里空空如也,期待你的发声

回顶部

分享

收藏